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Steady evaporating flow in rectangular microchannels
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Abstract

Analytical and numerical solutions are presented for steady evaporating flow in open microchannels having a rectangular cross sec-
tion and a uniform depth. The flow, driven by the axial gradient of capillary pressure, generally consists of an entry region where the
meniscus is attached to the top corners of the channel followed by a jump-like transition to a corner-flow region in which the meniscus
progressively recedes into the bottom corners of the channel. Illustrative numerical solutions are used to guide the derivation of an easily
applied analytical approximation for the maximum sustainable heat flux or capillary limit.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Heat pipes; Microfluidics; Capillary flow; Evaporative cooling; Microgrooves
1. Introduction

Heat pipes and capillary pumped loops utilize the capil-
lary suction of a wick material to draw liquid into the evap-
oration region, eliminating the need for active pumping of
the coolant. Traditional wicks are made of a porous mate-
rial such as a sintered metal, a felt metal, or a layered
screen [1]. More recently, a number of microfabrication
technologies have been used to produce engineered wick
structures that provide a better balance between the oppos-
ing requirements of increased capillary suction (small
pores) and reduced frictional flow resistance (large pores).
Electrical discharge machining (EDM) of metals and chem-
ical etching of silicon have been used to create microgroo-
ves having triangular, trapezoidal, sinusoidal, and nearly
rectangular cross sections [2–4].

Triangular grooves have received by far the most atten-
tion in the literature [4–12]. The axial flow along the chan-
nel is typically analyzed using a one-dimensional model
containing a friction coefficient relating the mean fluid
speed to the viscous shear stresses and gravitational forces
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that oppose the driving capillary pressure gradient. The
required friction coefficients are described by analytical
or tabular functions of the channel geometry and the
fluid/solid contact angle [12–16]. These relationships are
pre-determined by solving the two-dimensional Navier–
Stokes equations that apply in the cross sectional plane
of the channel.

In addition to modeling the bulk axial flow, some anal-
yses have included detailed modeling of the thin film region
immediately adjacent to the fluid/solid contact where most
of the evaporation occurs [5,9–11]. This nanoscale region
has microscale implications because the apparent contact
angle is dependent upon the local evaporation rate adjacent
to the meniscus contact line [9–11,17–19]. Indeed, for the
case of perfectly wetting systems Morris [18,19] has
derived, and verified by comparison with experimental
data, an easily applied formula for the apparent contact
angle as a function of the local evaporation rate and mate-
rial properties. Similarly, in partially wetting systems, local
evaporation will produce an apparent contact angle that
differs from the static or minimum contact angle deter-
mined by fluid/solid surface energies.

Boundary conditions at the channel inlet also influ-
ence the contact angle between fluid and solid. To our
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Fig. 1. Schematic of steady evaporating flow along rectangular micro-
channel. Axial variation of liquid volume fraction creates capillary
pressure gradient that drives the axial flow.

Nomenclature

A channel aspect ratio, D/W
Acc cross sectional area of channel
A‘ area occupied by liquid
C1,2 constants in Eqs. (18) and (19)
D channel depth
G* normalized gravitational acceleration
gx gravitational acceleration along channel
h liquid depth at channel side wall
hc liquid depth at channel center
Hfg latent heat of vaporization
L channel length
p fluid pressure
pc capillary pressure
p* normalized fluid pressure
q00 heat flux applied to channel bottom
Q* normalized heat flux
R radius of meniscus curvature
R0 characteristic curvature in Eq. (6)
s liquid saturation or volume fraction
t time
u mean liquid speed
W channel width
Wb base width including wall thickness

Greek symbols

a fluid/solid contact angle
b friction factor defined by Eq. (3)

D difference operator
Dp0 scaling pressure in Eq. (6)
Dncor normalized extent of corner flow
k W/hc, in Appendix A
K W/(h � hc), in Appendix A
l liquid viscosity
h angle defined in Eq. (A2)
H parameter defined in Eq. (34)
q liquid mass density
r surface tension
s dimensionless time
X parameter defined in Eq. (37)
n normalized axial position, x/L

Subscripts

cor corner flow
D dryout location
G match point (gravity flows)
M match point (corner flow)
min minimum value
max maximum value
‘ liquid phase
0 channel inlet or reference
v vapor phase

Superscript

* normalized quantity
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knowledge, only one previous study [6], addressing capil-
lary flow in triangular grooves, has acknowledged that
the channel is often liquid-full at its inlet and that an
accommodation region or meniscus deformation region gen-
erally exists wherein the meniscus remains attached to the
upper corners of the channel as it adjusts from its inlet con-
figuration to the smaller values associated with the mini-
mum (static) contact angle adjusted for local
evaporation. The resulting deformation and elongation of
the meniscus gradually reduces the contact angle, causing
an axial decrease in the radius of curvature, as depicted
schematically in Fig. 1 for a channel of rectangular cross
section. The result of this accommodation or meniscus
deformation process is to produce an axial gradient of
the capillary pressure that may substantially increase fluid
flow rates and sustainable heat fluxes. Depending on the
relative extent of the accommodation region, the maximum
sustainable heat flux may be increased by more than an
order of magnitude, compared to that attainable for a con-
stant contact angle.

The focus of prior work on triangular grooves may be
largely motivated by ease of prototype fabrication and
because the triangular shape provides a monotonic decrease
in meniscus radius and capillary pressure as the meniscus
recedes into the wedge shaped channel. Although this
ensures a continuous axial gradient of capillary pressure,
the triangular shape provides only half the cross sectional
area of a rectangular channel and the viscous friction is
greater, reducing the axial flow rate. In addition, deep trian-
gular cross sections cannot be readily produced using litho-



Fig. 2. Liquid configuration within rectangular channel. Meniscus curva-
ture and capillary pressure vary with liquid volume fraction within shaded
zones but not in dead zone.
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graphic processes that have been so successful in mass pro-
duction of semiconductor devices. In contrast, a large mul-
tiplicity of rectangular channels having widths down to a
few microns and depths ranging up to a millimeter or more
can be fabricated using the LIGA process based on electro-
deposition of metals into lithographically patterned molds
[20,21]. Thus, the focus of the present paper on rectangular
channels is partly driven by new manufacturing tech-
nologies, though there are certainly prior examples of
rectangular microchannels produced by micromachining,
saw cutting, and electrical discharge machining.

The present paper addresses steady evaporating flow in
microchannels of rectangular cross section. As in most pre-
vious analyses of microchannel flows, we restrict our mod-
eling to the bulk axial flow and utilize pre-determined
friction coefficients to account for viscous flow resistance.
However, unlike previous analyses, our solutions demon-
strate the existence of a flow structure having a meniscus
deformation region where the meniscus is attached to the
top corners of the channel followed by a jump-like transi-
tion to a corner-flow region in which the meniscus progres-
sively recedes into the bottom corners. These features of
the flow are illustrated by representative numerical results
for a range of channel aspect ratios, normalized gravita-
tional forces, and fluid/solid contact angles. In addition,
analytical solutions are used to describe the limiting cases
of large and small aspect ratios. Finally, the dryout heat
flux or ‘‘capillary limit’’ is presented for a broad range of
geometric parameters and operating conditions.

Since our primary goal is to illustrate fundamental fea-
tures of the axial flow structure, we will assume that the heat
flux to the base of the channel is simply uniform and we will
treat the minimum contact angle as a known and constant
quantity that may depend on the applied heat flux. In real-
ity, axial variations of the local heat flux, surface tempera-
ture, and the contact angle are determined by the heat
source geometry, heat conduction in the channel walls
and substrate, and the local contact line physics, coupled
with the axial capillary flow that we focus upon in the pres-
ent paper. However, the flow equations presented here can
be readily integrated for a variable heat flux and it is possi-
ble to integrate these other aspects of the coupled physics
into the capillary flow model described below.

2. Flow geometry and capillary pressure

Fig. 2 illustrates the cross sectional geometry of a rect-
angular microchannel containing a liquid separated from
the adjacent gas phase by a curved meniscus. The capillary
pressure, pc, representing the pressure difference across the
liquid/vapor interface, pv � p‘, is given by the Young–
Laplace equation

pc ¼ pv � p‘ ¼
r
R

ð1Þ

in which r is the surface tension and R is the radius of
meniscus curvature in the cross sectional plane. Since the
channel length, L, is generally much greater than the chan-
nel width, W, the local capillary pressure is controlled
mainly by the transverse curvature of the meniscus. More-
over, since the Bond number Bo = qgW2/r is usually small
in channels of submillimeter width, the radius of curvature
may be taken as constant at any axial cross section. This
approximation is made with the understanding that a
change in curvature may occur as the circular meniscus
merges into a submicron thin film that often covers por-
tions of the channel wall [2,3]. Although the presence of
such a thin film obscures the meaning of a contact angle,
this angle can still be defined in a macroscopic sense as
the angle between the side wall and a circular meniscus ex-
tended to meet the wall. An apparent contact point or con-
tact line can be defined in the same manner. Since the axial
flow is only sensitive to the macroscopic radius, r, the thin
film physics are conveniently incorporated through their
influence on the apparent contact angle, a, relating the
channel width to the macroscopic radius of curvature,
R = W/(2cosa). For simplicity, we will assume here that
the external vapor pressure, pv, is uniform so that pressure
gradients in the liquid result only from changes in the cap-
illary pressure. However, it is understood than in many de-
vices there will be an aiding or opposing pressure gradient
associated with the parallel flow of evaporated vapor.

Three different regimes of meniscus geometry are identi-
fied in Fig. 2. All three of these may apply over different
axial regions of the same channel, as in transient wetting
processes or in steady evaporating flows where the fluid
depth decreases along the channel, as in Fig. 1. Here, we
use the term regime to describe the alternative wetting
geometries depicted in Fig. 2. In contrast, the term region
refers to the axial domain or axial extent of a particular
flow regime. When the meniscus is attached to the top cor-
ners of the channel, the small but finite corner radius or the
singular character of a sharp corner permit the contact
angle to vary freely so long as it remains greater than the
minimum contact angle that applies when the meniscus
leaves the corner and moves downward onto the planar
wall. In this meniscus deformation or accommodation
regime [6], shown shaded at the top of Fig. 2, the liquid
pressure decreases as the meniscus bows downward into
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the channel, decreasing the radius of curvature and the
contact angle.

After reaching the minimum contact angle, further
reductions in liquid content cause the meniscus to detach
from the top corners and retreat toward the channel bot-
tom. The central portion of this regime, shown unshaded
in Fig. 2, has been referred to as the dead zone [3]. Within
this regime, the contact angle has a constant value deter-
mined by surface energy considerations and the local evap-
oration rate [17–19]. Thus, in a channel of uniform width,
the radius of curvature remains constant for all meniscus
positions between the fully bowed meniscus attached to
the top corners and a position near the bottom where the
center of the meniscus contacts the channel floor. Over this
central range of meniscus positions there is no variation in
the capillary pressure and hence no pressure gradient to
drive a flow of liquid along a dead zone of finite length.
As we shall see, the axial extent of the dead zone is mini-
mized by the formation of a very steep saturation gradient,
approaching a discontinuous saturation jump when the
axial curvature of the liquid/vapor interface is neglected,
as it is in the present mathematical model.

When the meniscus reaches the channel bottom, it splits
into a pair of separate menisci that are each attached to the
bottom and to one of the side walls. Within this regime, a
pair of identical corner flows are driven by the reduction in
liquid pressure that occurs as the triangular zone of liquid
recedes into the corner. The transition from a single menis-
cus that spans the channel into separate corner menisci is
continuous only for a minimum contact angle of 0� since
this is the only case where the meniscus has a contact angle
of 0� at the bottom center of the channel just before and
just after the meniscus touches the bottom. Thus, the tran-
sition generally involves an abrupt change in saturation but
the capillary pressure must be continuous.
Fig. 3. Variation of normalized capillary pressure with fractional satura-
tion (liquid volume fraction) for a minimum contact angle of 0�. Plateau
corresponds to dead zone. A = D/H.
Fig. 3 shows the variation of the normalized capillary
pressure, p�c ¼ pc=ð2r=W Þ, with the fluid saturation, s,
representing the area fraction or volume fraction of the
channel containing liquid. Results are presented for several
values of the aspect ratio, A = D/W. All three regimes
noted earlier in Fig. 2 are readily apparent in Fig. 3. When
s is small, the liquid resides only within the bottom corners
of the channel. In this corner-flow regime, the radius of
curvature is proportional to the wetted height of the side
wall; R � h. Further since s � h2 it follows that pc = r/
R � 1/s1/2 so that the capillary pressure based on contin-
uum concepts becomes infinite as s approaches 0. Although
this limiting behavior will ultimately be influenced by
molecular scale physics [17], these nanoscale effects do
not alter the microscopic process of interest here. At inter-
mediate values of s, there is usually a plateau of uniform
capillary pressure corresponding to the dead zone illus-
trated earlier in Fig. 2. All states to the right of the plateau
correspond to the meniscus deformation regime in which
the circular meniscus is attached to the top corners of the
channel. Here, the capillary pressure again decreases
monotonically as the bowing of the meniscus decreases
with increasing saturation. Finally, as s approaches unity,
the capillary pressure goes to 0, corresponding to a
liquid-full channel having a flat interface and, hence, an
infinite radius of curvature.

The width of the dead-zone plateau increases with
increasing aspect ratio (depth/width), exceeding 90% of
the overall saturation range for A > 4. Further, the plateau
in Fig. 3 vanishes for an aspect ratio of 0.5, leaving a con-
tinuous transition between the corner-flow regime and the
meniscus deformation regime. This continuous transition
is a special case that occurs only for a minimum contact
angle of 0� and only for an aspect ratio of 0.5. In this case
alone, the meniscus comes into contact with the channel
floor just as it reaches its fully bowed form, so there is no
dead-zone plateau and the angle of the meniscus at the
contact point is the same both before and after contact.

For contact angles greater than 0, the free surface
always undergoes an abrupt, nearly discontinuous, transi-
tion when the spanning meniscus splits into separate corner
menisci. This is because the apparent contact angle at the
bottom changes abruptly from 0�, as required by symmetry
just before contact, to the nonzero value that applies after
contact. Since the pressure and the radius of curvature
must be continuous across the saturation jump, the fluid
saturation on the corner-flow side of jump must decrease
with increasing values of the contact angle, as illustrated
in Fig. 4. This behavior can be understood by considering
the limiting case of a corner meniscus with a 45� contact
angle. Here, the radius of curvature is infinite and the cap-
illary pressure is zero no matter how small the saturation,
even though the circular meniscus attached to the side walls
prior to the jump had a finite capillary pressure. A corner
meniscus having a somewhat smaller contact angle, say
40�, can produce a significant capillary pressure, but only
for a very small saturation of s < 0.01 in Fig. 4. Note that



Fig. 4. Comparison of capillary pressure curves for minimum contact
angles ranging from 0� to 40�.
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contact angles exceeding 45� would require a change in free
surface curvature from concave to convex, preventing the
formation of corner flows ahead of the primary flow that
spans the full channel width.

Capillary pressure curves like those shown in Figs. 3 and
4 are constructed by geometric analysis of the flow con-
figurations shown in Fig. 2. A summary of the needed
geometric relations is given in Appendix A. The resulting
capillary pressure curves serve as constitutive information
to be used in solving the one-dimensional form of the axial
transport equations, as explained below.

3. Governing equations

The mass conservation equation describing transient
evaporating flow along the rectangular microchannel of
Fig. 1 may be written in the following one-dimensional
form:

o

ot
ðqAccsÞ þ

o

ox
ðquAccsÞ ¼ �

q00W b

H fg

ð2Þ

Here, t is the time, x is the axial position, q is the liquid
density, u is the mean axial speed, Acc = DW is the cross
sectional area of a channel of uniform width W and depth
D, s is the liquid saturation describing the volume fraction
of the channel containing liquid, and Hfg is the heat of
evaporation. It is assumed here that all of the heat flux
q00 applied to the channel bottom is consumed by local fluid
evaporation, requiring that temperature variations within
the system be moderate (cpDT� Hfg). This criterion is usu-
ally well satisfied. The heat flux, here assumed uniform,
is applied to a base of width Wb, somewhat greater
then the corresponding channel width, W, owing to the
presence of walls between neighboring channels. Usually,
Wb = W + B where B is the thickness of the channel side
wall.
The axial liquid speed, u, is determined by the balance
between the viscous friction force, lub/W2, the gravity
force acting along the channel, qgx, and the gradient of
the liquid pressure, p‘,

u ¼ �W 2

bl
op‘
ox
þ qgx

� �
ð3Þ

The viscosity l is presumed uniform and the sign of the
gravitational term implies that a positive gravity force op-
poses the pressure driven flow. The parameter b appearing
in the denominator is a friction coefficient that is simply the
reciprocal of the normalized mean fluid speed, U*, defined
in [16] b = 1/U*. Appendix A provides a brief description
of the analytical expression used to compute b from local
values of the contact angle, fluid depth and channel geom-
etry. This expression is based upon blending of analytical
results that apply in asymptotic limits of fluid depth and
contact angle, with the blending parameters chosen to ob-
tain best agreement with detailed numerical solutions [16].

Combination of Eqs. (2) and (3) yields a single partial
differential equation describing axial variations of the nor-
malized liquid pressure, p�‘ , and saturation, s

os
os
� o

on
s
b

op�‘
on
þ G�

� �� �
¼ �Q� ð4Þ

The non-dimensional variables appearing here have been
scaled in the following manner:

n ¼ x
L

p�‘ ¼
p‘ � pv

Dp0

s ¼ tW 2Dp0

lL2
ð5Þ

Here, L is the channel length and pv is the vapor pressure
that is assumed to be uniform above the channel. Dp0 is
the capillary pressure of a spanning circular meniscus in
a channel of width W when the wetting angle is at its min-
imum value, amin. The corresponding radius of curvature is
R0 = W/(2cosamin) and hence

Dp0 ¼
r
R0

¼ 2 cos amin

r
W

ð6Þ

The two dimensionless parameters in Eq. (4) are the nor-
malized heat flux Q* and the normalized gravitational
force, G*

Q� � q00

DqH fg

l
Dp0

� �
W bL2

W 3
G� ¼ qgxL

Dp0

ð7Þ

The two unknown functions, p�‘ and s, appearing in Eq. (4)
are generally related by capillary pressure curves like those
shown in Figs. 3 and 4. Further, since we are assuming that
there is no axial gradient of the gas pressure, we may take
pv as the zero or datum level so that the normalized capil-
lary pressure, p�c , is simply the negative of the normalized
liquid pressure, p�‘ .

p�cðsÞ �
pv � p‘

Dp0

¼ �p�‘ðsÞ ð8Þ

Thus, given that the capillary pressure is a known function
of s, we can rewrite Eq. (4) as follows in terms of s alone.



Fig. 5. Profiles of (a) fractional saturation, (b) velocity, and (c) pressure
along channel for various applied heat fluxes, Q*, with G* = 0, A = 0.5,
amin = 0�, p�0 ¼ 0. Saturation profile is always continuous for A = 0.5.
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os
os
þ o

on
s
b

dp�c
ds

os
on
� G�

� �� �
¼ �Q� ð9Þ

Here dp�c=ds is the slope of the capillary pressure curve and
is readily obtained by analytical or numerical differentia-
tion of functions like those shown in Figs. 3 and 4.

Although we are mainly interested in steady solutions to
the governing equations, these solutions are computed by a
time-marching finite-volume solution procedure. To ensure
diagonal dominance, we utilize a one-sided ‘‘upwind’’ dif-
ference approach dependent upon the signs of the quanti-
ties shown below in square brackets.

os
os
þ o

on
s
b

dp�c
ds

� �
os
on

� �
� o

on
s

G�

b

� �� �
¼ �Q� ð10Þ

The square bracketed quantities are evaluated at cell faces
and are iteratively updated several times at each time step
to obtain a fully implicit scheme. The number of grid
points along the flow is chosen to be relatively large, typi-
cally 500 or more, mainly to obtain fine resolution of satu-
ration jumps without introducing any specialized front
tracking or localized grid refinement procedures. Roughly
1000 time steps are typically required to reach a steady
state.

During the course of the solution, it is necessary to
obtain numerous values of the capillary pressure gradient,
dp�c=ds, and the friction coefficient, b, as a function of the
instantaneous saturation. This is done using the relation-
ships outlined in Appendix A where the fractional satura-
tion is written as an explicit function of fluid depth,
contact angle, and channel dimensions. This relationship
can be readily inverted by a procedure which first identifies
the appropriate wetting regime (meniscus deformation,
dead zone, corner flow) based on precomputed values of
the saturations that define the boundaries of these regimes.
Once the regime has been identified, the liquid depth can be
determined by inverting single-parameter geometric rela-
tions appropriate to that regime. Alternatively, the capil-
lary pressure curves can be precomputed and stored in
tabular form suitable for subsequent interpolation.

The boundary condition at the inlet is a prescribed sat-
uration, usually s(0,s) = 1. At the far end of the channel
the axial saturation gradient is set to zero to prevent flow
through the end wall. The initial saturation profile,
s(n, 0), is taken as uniform at either 0 or 1; either choice
yields the same steady solution. In many of the illustrative
calculations the flow does not penetrate all the way to the
end of the channel, as often observed in experimental stud-
ies. In these examples, the wetted length of the channel
gives a good indication of the influence of various para-
meters. However, the absence of evaporative cooling at
the dry end of the channel would often be unacceptable
in applications such as cooling of microelectronics. Thus,
to compute the maximum sustainable heat flux, Q�max we
sometimes perform iterative adjustments of Q* to deter-
mine the largest value of Q* for which the fluid penetrates
all the way to the channel end at n = 1.
4. Continuous flow structures

Computed steady profiles of fluid saturation, normal-
ized liquid velocity, and normalized liquid pressure are
shown in Fig. 5 for a minimum contact angle of 0� and
for a normalized gravitational force of G* = 0. Here and
hereafter, the normalized velocity is defined as

u� ¼ u
u0

¼ uLl

W 2Dp0

ð11Þ

The aspect ratio in Fig. 5 is A = 0.5, corresponding to the
capillary pressure curve in Fig. 3 having no plateau. Note
in Fig. 5a that the fluid saturation at the channel inlet is
unity, indicating that the meniscus is flat across the top
of the channel corresponding to an infinite radius of curva-
ture and hence a vanishing capillary pressure at the inlet,
p�0 � p�‘ð0Þ ¼ 0.



Fig. 6. Profiles of (a) fractional saturation, (b) velocity, and (c) pressure
along channel for various aspect ratios, A, with Q* = 1/6, G* = 0,
amin = 0�, p�0 ¼ 0. Saturation jump is present for A > 0.5.
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With increasing heat flux, Q*, the steady liquid content
within the channel is progressively reduced. For Q* =
1/30, the liquid saturation or volume fraction at the far
end of the channel is moderately depressed to a level of
about s = 0.7, increasing the downward bowing of the
meniscus. This reduces the radius of meniscus curvature
and reduces the pressure in the liquid phase, thereby creat-
ing the pressure gradient that draws liquid down the chan-
nel. However, for Q* = 1/24, the liquid can no longer
penetrate to the end of the channel. Still larger values of
Q* cause further reductions in the liquid penetration dis-
tance along the channel.

The saturation profiles in Fig. 5a for Q* = 1/24, 1/18,
1/12, and 1/6 all have the same basic structure. In the entry
region of the flow, the meniscus is attached to the top cor-
ners of the channel, and the reduction in liquid saturation
is accommodated by increased bowing of the meniscus.
The saturation gradient becomes infinite at the approach
to a sharp kink in the saturation profile. At this point the
meniscus is just touching the floor of the channel and, as
seen earlier in Fig. 3, dp�c=ds approaches 0, and this
requires that ds/dn approach infinity in order to maintain
the forward flow. However, immediately to the right of
the kink in Fig. 5, ds/dn remains finite, in keeping with
the finite value of dp�c=ds on the left hand side of the kink
in Fig. 3.

The velocity profiles in Fig. 5b are generally smooth and
nearly linearly within the meniscus deformation region
where the meniscus remains attached to the top corners
of the channel. For the smallest value of Q*, this deforma-
tion region extends over the full length of the flow. How-
ever, when the flow fails to reach the end of the channel,
the velocity appears to approach infinity at the dryout
point where the saturation approaches 0; this will be veri-
fied later analytically. In addition, there is a sharp increase
in velocity as the flow approaches the transition point
between the meniscus deformation region and the corner-
flow region. This steep rise in velocity is needed to offset
the steep reduction in saturation explained in the preceding
paragraph. These two trends toward infinite but opposing
gradients in saturation and velocity conspire to produce a
linearly decreasing variation of the product, us, as required
by Eq. (2). Although the velocity gradient approaches
infinity on the left of the transition point, the velocity itself
remains finite and must be continuous across the transi-
tion, since the mass flux and the saturation are both clearly
continuous.

The pressure profiles in Fig. 5c are unremarkable except
for the very steep pressure gradient at the dryout locations
of the flows that fail to reach the end of the channel. At
these points the pressure gradient becomes infinite and
the computed liquid pressure tends toward negative infin-
ity. In reality, these trends are modified by additional thin
film physics that become important at very low saturations
but are, for simplicity, excluded from our model. However,
the solutions presented here should be largely insensitive to
these details except in the immediate vicinity of the dryout
location. Since the neglected physics would presumably
mitigate the infinite pressure gradient predicted by the cur-
rent model, we would anticipate a slight shortening of the
corner-flow portion of the flow structure.

5. Saturation jumps

Saturation jumps may form in channels having suffi-
ciently large aspect ratios, as illustrated by the results pre-
sented in Fig. 6. Here, the minimum contact angle and the
normalized gravitational force are still 0, as previously in
Fig. 5. However, the normalized heat flux is now held fixed
at Q* = 1/6 while the aspect ratio A is varied from 0.5 to
10. Thus, the result shown for A = 0.5 is identical to that
shown previously in Fig. 5 for Q* = 1/6. For larger aspect
ratios the liquid penetration length along the channel is



Fig. 7. Profiles of (a) fractional saturation, (b) velocity, and (c) pressure
along channel for various normalized gravitational forces, G*, with A = 2,
Q* = 1/3, amin = 0�, p�0 ¼ 0. Saturation jump is diminished when gravity
aids flow.
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greater. This increase in penetration length holds true, even
though the scaling of the normalized heat flux, Q*, already
includes a linear dependence on the channel depth D.
Accordingly, one can apply a heat flux that is proportional
to the channel depth and still expect to see a longer pene-
tration for a channel of high aspect ratio, all channels hav-
ing the same width. This stronger than linear dependence
of penetration length on A results from the combined
effects of two factors that both increase the fluid flow rate,
increased cross sectional area and reduced friction. The
reduction in friction is realized because an increase in fluid
depth reduces the importance of the frictional forces on the
channel bottom.

The magnitudes of the saturation jumps in Fig. 6 are
identical to the breadths of the plateaus seen earlier in
the capillary pressure curves of Fig. 3. Thus, the disconti-
nuity in saturation corresponds to a jump across the
plateau region previously identified as the dead zone in
Fig. 2. The necessity of this jump is readily demonstrated
by axially integrating the steady form of Eq. (4), assuming
an axially uniform Q*, to obtain

s
b
� dp�‘

dn
� G�

� �
¼ s

b
dp�c
ds

ds
dn
� G�

� �
¼ þQ�ðnD � nÞ ð12Þ

This expression incorporates the boundary condition that
there be no flow beyond the point n = nD representing
either the dryout location or the end of the channel. Since
the right hand side of Eq. (12) is everywhere positive, it
follows that the quantity in square brackets must also
be everywhere positive. This requirement is easily satisfied
over portions of the saturation profile where dp�c=ds < 0
and ds/dn < 0. However, since dp�c=ds ¼ 0 over the entire
breadth of the dead zone, it follows that s(n) cannot be con-
tinuous over any potion of this range when G* P 0. How-
ever, when G* < 0 the gravitational force aids the flow
along the channel, and Eq. (12) can be satisfied by the fol-
lowing smooth nearly linear decrease of saturation within
the dead zone where dp�c=ds ¼ 0.

s ¼ �Q�b
G�
ðnD � nÞ or

ds
dn
� Q�b

G�
< 0 ð13Þ

In keeping with the discontinuous saturation profiles of
Fig. 6, the slope of the saturation profile becomes progres-
sively steeper with decreasing G*, approaching a jump as
G* approaches 0.

Fig. 7 illustrates the influence of G* on the axial satura-
tion profile for an aspect ratio of A = 2, an applied heat
flux of Q* = 1/3, and a contact angle of 0�. With increasing
G*, the penetration depth is reduced, as expected, since a
positive value of G* indicates a gravitational force that
opposes the capillary driven flow. In addition it is seen that
for G* < 0 the magnitude of the saturation jump decreases
as G* becomes increasing negative. Consistent with Eq.
(13), a larger portion of the dead zone is now traversed
by a smooth decline in saturation. As also predicted by
Eq. (13), the slope of the saturation profile within the dead
zone becomes flatter as the magnitude of G* increases.
Also, for any given fixed value of G*, the slope of the sat-
uration profile becomes slightly steeper with decreasing sat-
uration because the friction coefficient, b, increases with
decreasing fluid depth.

Abrupt transitions like the saturation jumps described in
the preceding section will always be smeared over a transi-
tion region of finite thickness by some secondary physical
process. The saturation discontinuities of the present math-
ematical solutions can be removed by locally accounting
for the axial component of meniscus curvature. To estimate
the axial extent, d, of the transition region we first note that
the axial radius of meniscus curvature, Raxial, is related as
follows to the depth profile of the liquid

1

Raxial

¼ d2hc

dx2
ð1þ ðdhc=dxÞ2Þ�3=2 � D

d2
ð14Þ
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where hc is the local height of the meniscus at the channel
center and D is the channel depth. Within the transition re-
gion the flow is driven by the axial gradient of this longitu-
dinal component of the capillary pressure.

dpc

dx
� d

dx
r

Raxial

� �
� rD

d3
ð15Þ

Outside the transition region the flow is driven mainly by
the axial gradient of the capillary pressure resulting from
the transverse meniscus curvature.

dpc

dx
� d

dx
r
R0

� �
� rw

2L
ð16Þ

Finally, since the flow speed in the transition zone must
usually be comparable to that outside, the two pressure
gradients noted above must be comparable in magnitude.
Equating the above pressure gradients in Eqs. (15) and
(16) yields the following estimate for the relative extent of
the transition region,

d
L
� wD

2L2

� �1=3

ð17Þ

Thus, the transition zone is relatively short when D and W

are both small compared to L. For example, a typical chan-
nel having a width of 0.1 mm, a depth of 0.3 mm, and a
length of 2 cm will have a transition zone that is about
3% of the overall channel length. For aspect ratios A > 1,
the transition zone will be narrower than this because the
fluid speed and required capillary pressure gradient just up-
stream of the saturation jump are generally much smaller
than the inlet speed, as apparent in Fig. 6.

Problems like the present one having embedded or
boundary-layer regions where higher order derivatives
become important have often been successfully attacked
using a singular perturbation approach that involves
asymptotic matching of inner and outer solutions [22]. In
general, discontinuities of the outer solution are locally
smoothed over the inner length scale, here d, without sub-
stantially altering the global character of the outer solu-
tion, here represented by solutions containing saturation
jumps.

6. Analytical solution for corner flows

The preceding numerical results have demonstrated that
the overall flow structure generally consists of two distinct
regions, the meniscus deformation region and corner-flow
region, separated by a saturation jump (for G* P 0) and/
or a linear gradient (for G* < 0) that spans the dead zone
of the capillary pressure curve. However, when the aspect
ratio is very large, the corner flows are of little significance
since the fluid depth in the corners is small compared to the
overall channel depth. Conversely, when the channel aspect
ratio is relatively small and the inlet meniscus is deeply
bowed, only the corner flows are important. Within each
of these flow regions, the governing equations can be
solved analytically, providing added insights as well as a
check on the preceding numerical results.

When the channel aspect ratio is sufficiently small, the
meniscus is in contact with the channel floor over most,
if not all, of the channel length. Under these conditions
liquid resides only within the two corner regions where
the side walls meet the channel floor. The fluid geometry
within these corners is determined solely by the minimum
contact angle and by a single transverse length dimension,
here taken as the wetted height of the wall, h in Fig. 2. Note
that, for corner flows, the wetted length measured across
the channel bottom is equal to the wetted height, since
the contact angle is the same on the bottom and side walls.
As the flow proceeds along the channel, the local fluid vol-
ume is gradually reduced by evaporation causing a reduc-
tion in h and a proportional reduction in the radius of
curvature.

A differential equation for the axial variation of the wet-
ted height, h, is now derived by rewriting the expressions
for saturation, pressure, and velocity in terms of h. First,
the cross sectional area occupied by the liquid is simply a
constant times the square of h,

A‘ ¼ C1ðaminÞh2 ¼ 2 1� p
4

� �
h2 for amin ¼ 0 ð18Þ

Here, the second equality applies to the special case of
amin = 0; a general expression for C1 is given by Eq. (A3)
of Appendix A. Recalling that the full cross sectional
area is DW, the fractional saturation is given by s =
A‘/DW = C1h2/DW. Further, since the radius of curvature
is directly proportional to h, as given by R = hcos(p/4)/
sin(p/4 � amin), we can write Eq. (1) as

p‘ ¼ �C2ðaminÞ
r
h
¼ � sinðp=4� aminÞ

cosðp=4Þ
r
h

ð19Þ

with the implication that the liquid pressure gradient can
be expressed as the gradient of h. Eq. (3) still relates the
pressure gradient to the fluid speed except that the fric-
tional length scale W is replaced by h. In addition, the value
of the friction coefficient becomes a function of a alone,
and so remains constant along the length of the flow. This
function, b(a), has been evaluated by Ransohoff and Radke
[14]; a value of b = 93.93 applies for a wetting angle of 0.
Substitution of these results into Eq. (1) yields the follow-
ing differential equation for h* = h/W.

d

dn
h�

2 dh�

dn
þ h�

4

G�
W

R0C2

� �
¼ Q�

D
R0

b
C1C2

� Q
_
� ð20Þ

For the case of a horizontal flow with G* = 0, Eq. (20) can
be integrated analytically subject to a no-flow boundary
condition at n = 1 to obtain

h�

h�0

� �3

¼ 1þ 3
Q
_
�

h�
3

0

n2

2
� n

� �
ð21Þ

The maximum sustainable heat flux corresponds to a value

of Q
_�

max ¼ 2h�
3

0 =3 for which h* approaches 0 at the end of
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the channel where n = 1. Under this incipient dryout con-
dition, the primary dependent variables can written as
follows:

h� ¼ h�0ð1� nÞ2=3 ¼ 1

2
ð1� nÞ2=3 ð22Þ

s ¼ C1

W
D

h�
2 ¼ 1� p

4

� �
ð1� nÞ4=3 ð23Þ

p�‘ ¼ �C2

R0

W
1

h�
¼ �ð1� nÞ�2=3 ð24Þ

u� ¼ C2

b
R0

W
2

3
h�0ð1� nÞ�1=3 ¼ 1

6b
ð1� nÞ�1=3 ð25Þ

Q�max;cor ¼ Q
_�

max

C1C2R0

Db
¼ 2

3
h�

3

0

C1C2R0

Db
¼ 3:8� 10�4 ð26Þ

Here, the furthest right member of each equation corre-
sponds to the particular case where the minimum contact
angle is 0 and the inlet meniscus is attached to the top
corners of the channel; hence h0 = D = R0 = W/2, h�0 ¼
1=2, b = 94, C1 = 2(1 � p/4) = 0.429, C2 = 1.

Fig. 8 shows a comparison of the analytical results given
by Eqs. (22)–(26) with numerical calculations (symbols)
performed by the method described earlier. The agreement
is very good even in the neighborhood of the singularity at
the end of the channel where the saturation approaches 0.
Here, the velocity and the pressure tend toward the oppo-
site extremes of infinity and negative infinity, respectively.
Any such singularity can generally be traced to the neglect
or simplification of physical processes that become impor-
tant in the immediate neighborhood of the singularity.
Here we have neglected the disjoining pressure, important
in very thin films, and we have simplified the three-dimen-
sional structure of the meniscus at the leading edge of the
flow. However, since these phenomena should only be
important within one or two channel widths of the leading
edge, they should not substantially alter the overall flow
structure or the sustainable heat fluxes.
Fig. 8. Comparison of numerical calculations (symbols) with exact
analytical solution (solid lines) for flow in the bottom corners of the
channel. G* = 0, A = H/W = 0.5, amin = 0�, Q* = 3.8 · 10�4, p�0 ¼ �1.
The flow structure illustrated in Fig. 8 should always
apply at the leading edge of a steady evaporating flow
where the saturation approaches 0, regardless of the
upstream flow structure. Furthermore, the gravitation
forces neglected in Fig. 8 should have little influence on
the leading edge since viscous and pressure forces both
become very large as s! 0. Thus, it is not surprising that
the same structure is consistently observed at the leading
edge of all of the more complex flows illustrated in Figs.
5–7. Indeed, the leading portion of the flow should look
identical to that shown in Fig. 8, except that the overall
length of the leading structure is shortened from unity in
Fig. 8 to a smaller length, Dncor,

Dncor

1
¼

Q�max;cor

Q�

� �1=2

ð27Þ

where Q�max;cor is given by Eq. (26). The square root depen-
dence results from the observation that the square of the
fluid penetration length is inversely proportional to the ap-
plied heat flux, as apparent in the scaling of Q* defined by
Eq. (7a). As an example, for an aspect ratio of A = 0.5 and
a normalized heat flux of Q* = 1/24, Dncor = (24 · 3.8 ·
10�4)1/2 � 0.1, in good agreement with the length of the
precursor corner flow for Q* = 1/24 in Fig. 5. Similarly,
for A = 2 and Q* = 1/3, Dncor = (3 · 3.8 · 10�4/4)1/2 �
0.02 in reasonable agreement with the precursor corner
flows observed for all G* in Fig. 7. The factor of 1/4 in
the preceding calculation of Dncor accounts for the ratio
R0/D = 1/4 (for A = 2) appearing in Eq. (26).

Although we cannot analytically integrate Eq. (20) for
nonzero G*, we can roughly estimate the ratio of maximum
heat fluxes with and without gravity by forming the follow-
ing ratio of the bracketed terms on the left side of Eq. (20).

C �
Q�max;w=grav

Q�max;wo=grav

�
h�

2 dh�

dn
þ h�

4

G�
W

R0C2

h�
2 dh�

dn

ð28Þ

Making the substitutions h� � �h
� � h�0=2 and dh�=dn �

�h�0=Dncor we arrive at the estimate

C ¼ 1� G�Dncorh
�
0

W
4R0C2

¼ 1� G�Dncor

4
ð29Þ

As in Eq. (26), the furthest right equality corresponds to
the particular case where the minimum contact angle is 0.
Further, since G* must be less than unity for the flow to
reach the end of the channel and since Dncor is usually
�1 for the flows of interest here, the effects of gravity on
the corner-flow region are generally unimportant. If de-
sired, more complete analytical treatments of the corner-
flow region can be developed using approaches previously
applied to channels having triangular cross sections [5–7].

7. Analytical solution for large aspect ratios

When the aspect ratio is large, the meniscus remains
attached to the top corners of the channel over most of



Fig. 9. Relative extent of corner flow region versus aspect ratio for various
choices of the normalized inlet pressure, p�0, with G* = 0, amin = 0�. Solid
lines are from Eq. (34). Dotted lines are from simplified form of Eq. (34)
for large aspect ratio. Symbols are from numerical calculations in Fig. 6.
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the wetted length, as suggested by the numerical solutions
in Fig. 6. Under these conditions, the meniscus curvature
increases and the liquid pressure decreases with distance
owing to changes in the contact angle, but there is very lit-
tle reduction in the saturation of a high aspect ratio chan-
nel. Even for a contact angle of 0, the maximum possible
reduction in saturation is readily found to be only p/(8A)
or about 8% for an aspect ratio of A = 5. Thus, for large
A, it is permissible to analytically integrate Eq. (12) assum-
ing that the saturation, s, and the friction coefficient, b,
remain uniform along the flow path to obtain

p�‘ðnÞ ¼ p�‘ð0Þ � G�n� Q�
�b
�s

n� n2

2

� �
ð30Þ

where the overbars on �s and �b indicate suitably chosen
average values, approaching 1 and 12, respectively, in the
limit of large A.

The maximum sustainable heat flux is defined here as
the largest value of Q* for which the fluid penetrates the full
length of the channel to n = 1. In the limit of high aspect
ratio this condition corresponds to a fully depressed menis-
cus at the far end of the channel, or equivalently, p�‘ ¼ �1
at n = 1. A greater heat flux would necessitate a saturation
jump from near unity to a small value of order 1/A, since
only the bottom corners contain liquid on the downstream
side of the jump. Further, as seen earlier in Fig. 6 for
A = 10, the fluid penetration beyond the jump is very small
when A is large. Thus, setting p�‘ð1Þ ¼ �1 in Eq. (30), the
maximum sustainable heat flux is estimated as

Q�max ¼ 2
�s
�b
ð1þ p�0 � G�Þ 6 1

6
ð1� G�Þ ð31Þ

The inequality in Eq. (31) applies to the optimal case where
the inlet meniscus is flat ðp�0 � p�‘ð0Þ ¼ 0Þ and the aspect ratio
is sufficiently large that �s! 1 and �b! 12. As expected, the
maximum flux goes to 0 when G� ! 1þ p�0 ¼ Dp�. In this
limiting case the maximum available capillary pressure,
Dp*Dp0, is equal to the gravitational pressure head, qgxL,
leaving no excess capillary pressure to drive the flow.

An improved approximation of the maximum heat flux
can be obtained by matching the meniscus deformation
solution of the present section with the corner-flow solution
of the preceding section. Under conditions of maximum
sustainable heat flux, the meniscus now becomes fully
depressed at the match point between regions, n = nM.
Accordingly, p*(nM) = �1 and we can rewrite Eq. (30) as

Q�max ¼
�s
�b

ð1þ p�0 � G�nMÞ

nM 1� nM

2

� �� � ¼ �s
�b

ð1þ p�0 � G�nMÞ
1

2
ð1� Dn2

corÞ
ð32Þ

where Dncor � 1 � nM is the fractional extent of the corner-
flow region relative to the overall wetted length of the
channel, here taken as unity for convenience of notation.
Another expression for the maximum heat flux is obtained
from Eqs. (26) and (27).

Q�max ¼
Q�max;cor

Dn2
cor

¼ Q
_�

max

C1C2R0

DbDn2
cor

¼ 3:8� 10�4

2ADn2
cor

ð33Þ
Here, we have used the fact that the maximum sustainable
flux in the corner region is proportional to 1/Dn2, as ex-
plained in earlier discussion of Eq. (27). Also, in the last
equality of Eq. (33) the constants are evaluated for a
minimum contact angle of 0 in which case D/R0 =
D/(W/2) = 2A. Equating these two alternative expressions
for the maximum heat flux, Eqs. (32) and (33), yields the
following expression for Dncor.

Dncor ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ 2H

r
; where H ¼ 2A

�s
�b

ð1þ p�0 � G�nMÞ
3:8� 10�4

ð34Þ
Since Dncor is usually small and G* < 1, it is usually suffi-
cient to set nM � 1 in Eq. (34) to obtain an initial approx-
imation that can be iteratively improved.

The solid lines in Fig. 9 show the relative extent of the
corner-flow region, Dncor/nD, computed form Eq. (34) for
G* = 0. This expression is valid for any choice of the over-
all wetted length to the dryout point, nD, not just for the
special case of unit length, nD = 1, considered in the deriva-
tion of Eq. (34). This generality holds because the maxi-
mum sustainable heat fluxes are inversely proportional to
the square of the wetted length in both regions of the flow.
To demonstrate this generality, the symbols shown on the
plot were taken from the numerical solutions shown in
Fig. 6 for various aspect ratios; all of these had nD < 1.
For a relatively flat entry meniscus, say �0:5 6 p�0 6 0,
the relative extent of the corner-flow region is less than
0.1 for all aspect ratios greater than unity. Thus, under
these circumstances, the meniscus deformation region
comprises 90% of the overall wetted length. Even for a
relatively deeply bowed meniscus having p�0 ¼ �0:9 the
meniscus deformation region comprises more than 80%
of the wetted length for all aspect ratios greater than unity.
Thus, it is only when the entry meniscus is almost fully
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depressed that the corner flow becomes a dominant
consideration.

Fig. 9 illustrates good agreement between the analytical
approximation of Eq. (34) and the numerical results shown
by symbols. An even simpler approximation shown by dot-
ted lines in Fig. 9 is applicable for relatively large aspect
ratios, A > 2 or 3, where we can make the substitutions
�s � 1 and �b � 12 in Eq. (34). It is certainly possible to con-
struct intermediate approximations having accuracy
between the two levels of approximation shown in Fig. 9.
However, as explained further in the next section and in
Appendix A, it is not difficult to compute the quantities �s
and �b appearing in Eq. (34).

Once the location of the match point nM = 1 � Dncor is
known from Eq. (34), the maximum heat flux can be calcu-
lated from either Eq. (32) or Eq. (33). However, given that
the meniscus deformation region usually accounts for the
great majority of the heat removal, one can obtain quite
a good approximation by simply adding the maximum sus-
tainable flux for the corner flow predicted by Eq. (26) to
that predicted by Eq. (31).

Q�max � 2
�s
�b
ð1þ p�0 � G�Þ þ Q�max;cor ð35Þ

This ensures that we recover the correct corner-flow limit
when the meniscus is fully depressed at the channel inlet
and, hence, p�0 ¼ �1. This simple approximation also pro-
vides very good agreement with numerical calculations of
the maximum flux, as demonstrated in the next section.

A matching between flow regions, similar to that in Eqs.
(32)–(34), can also be used to account for the increased
cooling capacity associated with a gravity-aided flow tra-
versing a portion of the ‘‘dead zone’’, as explained earlier
in the context of Fig. 7. The breadth of this gravity-aided
zone, nD � nG, is related to Q*, G*, and the saturation
and friction coefficient, sG and bG, at the match point,
nG, through the following rearrangement of Eq. (13a)

Q�max ¼ �
sG

bG

G�

ð1� nGÞ
> 0 ð36Þ

Here again we have for convenience set nD = 1, corre-
sponding to incipient dryout at the end of the channel.
As before, a second expression for the heat flux is obtained
by evaluating Eq. (30) between the inlet and the match
point, nG. This is identical to the first equality in Eq.
(32), except that nM is replaced by nG. Since the heat flux
is assumed uniform along the channel, Eqs. (32) and (36)
can be equated to obtain a quadratic equation for the
match point location, nG.

1

2
n2

G þ XnG � X ¼ 0; where X ¼ � 1þ p�0
G�

> 0 ð37Þ

This simplified quadratic assumes that the values of s and b
at the match point, sG and bG, are the same as the average
values over the upstream flow, �s and �b. The following solu-
tion to Eq. (37)
nG ¼ �Xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 2X

p
ð38Þ

is simply substituted back into Eq. (32) or (36) to compute
the maximum sustainable heat flux. Comparisons of the
preceding analytical approximations with numerical results
are presented in the next section.

8. Dryout heat fluxes

The maximum sustainable heat flux, as limited by the
viscous flow considerations modeled here, is commonly
referred to as the capillary limit. This limiting flux, q00max, is
the maximum value for which the wetting fluid penetrates
the full length of the channel. The corresponding normal-
ized flux, Q�max, can be determined by computing a sequence
of solutions for gradually increasing Q* until reaching the
value for which the saturation is barely zero at the end of
the channel. Further increases in Q* result in a dry section
near the end that is no longer cooled by evaporation. In a
device having a uniform flux over its full length, the energy
flux into the dry portion would cause a sharp temperature
rise and a shifting of some of the heat load by conduction
toward the cooler end, causing further fluid recession.
Although the present model does not include this redistri-
bution of energy, it can still be used to predict the onset
of dryout, the quantity of greatest practical interest.

The dimensional heat flux, q00max, corresponding to the
dryout limit can be readily computed by substituting the
numerically calculated value of Q�max into the following
rearrangement of the defining equation, Eq. (7):

q00max ¼ Q�maxDqH fg
W 3

W bL2

Dp0

l
ð39Þ

Alternatively, one can also calculate the maximum penetra-
tion length, Lmax, of fluid drawn into a heated channel by
capillary suction.

Lmax ¼ Q�maxDqH fg

W 3
0

W bq00
Dp0

l

� �1=2

ð40Þ

This wetted length has been frequently used as an experi-
mental indication of channel performance and as a means
of checking the validity of mathematical models, though
mainly for channels of triangular cross section [2–4,6,7].

Eq. (40) also serves as the basis of a non-iterative
approach for calculating Q�max. For any initial guess, Q�trial,
we compute the normalized fluid penetration, ntrial, as the
dryout point where the saturation goes to 0. Since penetra-
tion lengths are inversely proportional to the square root of
the applied flux, in accordance with Eq. (40), it follows that
a normalized maximum flux of Q�max ¼ Q�trialn

2
trial will permit

fluid penetration to precisely the endpoint of the channel
where n = 1. However, multiple iterations are still required
when G* = qgxL/Dp0 is nonzero, since this parameter is
dependent on the wetted length of the channel.

Fig. 10 compares numerically computed values of the
maximum heat flux (symbols) with the analytical predic-



Fig. 10. Comparison of analytical (lines) and numerical (symbols)
predictions of maximum sustainable heat flux for various choices of the
normalized inlet pressure, p�0, with G* = 0, amin = 0�.

Fig. 11. Comparison of maximum sustainable heat fluxes for two choices
of minimum contact angle, amin, with G* = 0. Normalization of Q�max by
cosamin has largely removed dependence on amin. Lines and symbols are
analytical and numerical predictions, respectively.
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tions of Eq. (35). The most striking feature of the plot is the
large benefit of increasing aspect ratio, though there is not
much additional increase in Q�max for A > 5. In addition to
the order of magnitude increases of Q�max apparent in the
plot, there is an additional linear increase of the actual heat
flux, Qmax, due to the appearance of the channel depth, D,
in Eq. (39).

The strong influence of the inlet pressure or, equiva-
lently, the curvature of the meniscus at the inlet is also
clearly apparent in Fig. 10. For an aspect ratio of
A = 0.5, the maximum flux for a channel having a liquid-
full inlet with a flat meniscus ðp�0 ¼ 0Þ is about 0.04 as com-
pared with the value of 0.00038 predicted by Eq. (26) for a
fully bowed inlet meniscus ðp�0 ¼ �1Þ. This hundredfold
difference is ignored in models that assume the meniscus
to be fully bowed at the inlet, as done in many previous
analyses of flow in grooves having triangular cross sections.
As the channel aspect ratio increases, the influence of the
inlet curvature becomes less pronounced but still exceeds
one order of magnitude.

The agreement between numerical and analytical results
in Fig. 10 is generally quite good. Here, the analytical
results are computed from Eq. (35) using average values
of the saturation and friction coefficient, �s and �b, based
on an average contact angle, �a ¼ xa0 þ ð1� xÞae, that
weights the inlet value, a0, twice as heavily (i.e. x = 2/3)
as the end value, ae, in recognition that the flow rate
decreases linearly with distance owing to fluid evaporation.
Under conditions of maximum flux ae = amin and the
corresponding inlet contact angle is given by cos a0 ¼
�p�0 cos amin. After calculating the weighted average of a,
the corresponding value of the mean saturation �s is com-
puted from Eqs. (A1) and (A2) and �b follows from (A4)–
(A7). This sequence of calculations is performed with no
required root finding or iterations. The agreement between
analytical and numerical results in Fig. 10 is good enough
to suggest that further refinement of our analytical model
would not yield substantial improvement.

Fig. 11 shows that the normalized value of the maxi-
mum sustainable heat flux, Q�max, is nearly insensitive to
the value of the minimum contact angle over the range
from amin = 0 and 40�. However, this insensitivity is mainly
an indication of appropriate scaling, since Q* is normalized
by a pressure differential that depends upon the minimum
wetting angle, Dp0 = 2rcosa0/W. Thus, in accordance with
Eq. (39), the actual value of the maximum heat flux, q00max,
increases linearly with cosa0. The normalized maximum
heat flux is expected to increase somewhat with increasing
contact angle because the reduced downward bowing of the
meniscus increases the fluid depth and reduces the friction.
However, this influence appears to be sufficiently moderate
that it is almost negligible, and it is certainly negligible in
the limit of large aspect ratio.

The agreement between numerical and analytical results
in Fig. 11 is excellent for small aspect ratios. However, for
aspect ratios greater than about A = 2 the numerical results
for amin = 40� become increasingly inaccurate owing to
numerical oscillations occurring as the saturation jump
moves back and forth across the grid lines nearest the
jump. Higher aspect ratios increase the magnitude of the
pressure jump, while larger contact angles appear to
amplify the numerical noise, which is further compounded
by the severely singular nature of the corner-flow structures
adjacent to the jump. As a result, the numerical solutions
suggest that the normalized heat flux for amin = 40� is a
few percent less than that for amin = 0� for aspect ratios
greater than about A = 4. We know that this cannot be
the case in the limit of very large aspects ratios where the
analytical result becomes increasingly more reliable than
the numerical result. For that reason we have not included
the numerical results beyond the range shown. The main
conclusion to be drawn is that variations in the minimum
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contact angle are very well accounted for by the scaling of
Q*. The considered range of contact angles 0� 6 amin 6 40�
is probably representative of those likely to be used in
evaporative cooling applications, particularly since there
can be no corner flow ahead of the jump for amin P 45�
as discussed earlier.

The influence of gravitational forces is illustrated in
Fig. 12. As expected, the maximum sustainable heat flux
is reduced when G* > 0 because the gravitational force
opposes the flow. Conversely, Q�max is increased when
G* < 0 and the gravitational force aids the flow. The solid
lines represent analytical predictions based on Eqs. (36)–
(38) which include the gravity-aided flow traversing a por-
tion of the ‘‘dead zone’’ when G* < 0. When G* P 0, these
equations become equivalent to Eq. (35) used in construct-
ing Figs. 10 and 11.

The agreement between analytical and numerical results
in Fig. 12 is good for G* 6 0. This is partly because the
magnitude of the saturation jump is reduced by an aiding
gravitational force. However, as noted earlier, the numeri-
cal results for G* P 0 sometimes become noisy, particularly
when aspect ratios (and hence saturation jumps) are large,
and this is aggravated by increasing large positive values of
G*. Fortunately, we have very high confidence in the ana-
lytical results when the aspect ratio is large, which is pre-
cisely where the numerical calculations become suspect.
In addition, the numerical results appear quite reliable at
the lower aspect ratios where the analytical model is in
greatest need of verification. Thus, the two solutions meth-
ods complement one another and provide confidence in the
analytical model over the full range of conditions.

9. Summary

Analytical and numerical solutions have been used to
investigate steady evaporating flows in open rectangular
microchannels. The flow structure was found to generally
consist of two principal regions, an entry region where
the meniscus remains attached to the top corners of the
channel followed by a corner-flow region where the menis-
cus recedes into the bottom corners of the channel. The
transition between these regions generally involves a
jump-like change in the fluid depth as the meniscus
detaches from the top corners and attaches to the channel
floor. In cases where gravity aids the flow, a portion of this
transitional jump is replaced by a third flow region in
which the meniscus is attached to the channel side walls
as it gradually descends toward the floor.

In addition to numerical modeling, analytical solutions
were derived for each of the preceding flow regions. Exact
analytical solutions were used to verify the accuracy of
the numerical model in dealing with the jump-like transition
in the middle of the flow and the severe singularities of fluid
pressure and velocity at the leading edge where the fluid sat-
uration approaches 0. Also, approximate analytical models
of the three regions were joined together into a relatively
simple composite model that predicts maximum sustainable
heat fluxes within a few percent of the numerical results.

The evaporative cooling capability of rectangular chan-
nels was presented in terms of a maximum sustainable heat
flux, Q�max, scaled in a manner intended to eliminate first
order dependence on channel dimensions, flow parameters,
and fluid properties. Despite this scaling, Q�max increases sev-
eral fold as the channel aspect ratio (depth/width) increases
from 0.5 to 5. Q�max is also extremely sensitive to the fluid
configuration at the inlet, decreasing by about three orders
of magnitude as the inlet meniscus varies from a flat orien-
tation with essentially no curvature at the inlet to a deeply
bowed meniscus having the maximum inlet curvature. In
the latter case of a fully bowed inlet meniscus, an abrupt
reduction in fluid depth occurs just beyond the inlet, leaving
the downstream flow confined to the corners of the channel.
Conversely, the much flatter inlet meniscus of a liquid-full
channel provides the maximum axial variation in the capil-
lary pressure and by far the greatest flow capacity.

These observations regarding the benefits of a large
channel depth and a flat entry meniscus must, however,
be weighed against two offsetting considerations. Although
an increased channel depth provides more axial fluid flow,
it also increases the length of the conduction path and
hence increases the temperature difference between the
channel base where heat is applied and the meniscus con-
tact region where evaporation is intended to occur. If this
temperature difference should become excessive, boiling
will occur at the channel base, hindering performance. For-
tunately, moderate temperature differences are acceptable
because the increased pressure inside small bubbles helps
to elevate the vaporization temperature [1,17]. Similarly,
a flatter entry meniscus, and hence a larger contact angle,
increases the liquid pressure at the inlet, thereby providing
a larger pressure difference to drive the axial capillary flow.
Conversely, previous analyses of the meniscus contact
region [18,19] indicate that the heat flow to an evaporating
meniscus is maximized at zero contact angle. Thus, optimal
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choices of design parameters and operating conditions will
require a comprehensive model that includes all of these
physical processes. Although the goal of the present study
was to investigate fundamental aspects of capillary flow in
rectangular channels, the resulting analytical relationships
may ultimately be combined with compact models of the
other processes to arrive at convenient and comprehensive
tools for design of evaporative cooling device.
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Appendix A

For a fully spanning meniscus (hc > 0), the rectangular
channel shown in Fig. 2 contains a liquid volume fraction,
or saturation, given by

s ¼ W
2D

2h
W
� 1

K
� p� 2ðaþ hÞ � sin½2ðaþ hÞ	

8 cos2 h cos2ðaþ hÞ

� �
ðA1Þ

where

K ¼ W
h� hc

¼ 2 cos a
1� sin a

and tan h ¼ 2

K
ðA2Þ

For corner flows (hc = 0), Eq. (A1) takes a slightly different
form in which h = p/4:

s ¼ h2

WD
1� p� 2ðaþ hÞ � sin½2ðaþ hÞ	

4 cos2 h cos2ðaþ hÞ

� �
ðA3Þ

Thus, the constant C1 appearing in Eqs. (18), (20), (23) and
(26) is identified as the square bracketed term in Eq. (A3).

The friction coefficient b appearing in Eq. (3) is evalu-
ated using the analytical expressions derived in [16]. In that
study, the velocity distribution was calculated for a wide
range of channel geometries and fluid depths by numeri-
cally solving the two-dimensional Poisson equation relating
the axial pressure gradient, dp/dz, to the viscous forces in
the cross sectional plane of the channel. The mean fluid
speed, u, was then computed by averaging the local fluid
speed over the region of the channel containing liquid. This
speed was then normalized to obtain a non-dimensional
speed, U*, that is similar to the dimensionless mean speed,
u*, defined in Eq. (11). They differ in that U* is normalized
by the local pressure gradient, dp/dz, whereas u* is normal-
ized by the maximum capillary pressure Dp0 divided by the
channel length. To avoid confusion, it is helpful to define a
friction coefficient, b, that is the reciprocal of U*, for use in
the present momentum equation, Eq. (3).

1

b
� U � ¼ Ul

W 2ðdp=dzÞ
ðA4Þ
Generalized analytical expressions for U* are derived in
[16] by blending of asymptotic expressions that apply in
limits of high and low aspect ratios and limits of small
and large contact angles. The blend is implemented using
the following expression that applies to any pair of asymp-
totes, U �1 and U �2:

U � ¼ ðU �1U �2Þ
m

ðU �1Þ
m þ ðU �2Þ

m

� �1=m

ðA5Þ

This composite function reduces to U �1 in the limit when
U �1 � U �2 and, conversely, reduces to U �2 when U �2 � U �1.
The parameter m controls the shape of the transition be-
tween asymptotes. This expression is first applied to corner
flows (hc = 0 in Fig. 2) using asymptotic expressions that
apply in the limits of small and large contact angles to
obtain

U �c ¼
U m

c;0

1þ ðU �c;0Þ
m½7ðK� 2Þ2 þ bðK� 2Þk	m

" #1=m

ðA6Þ

Here U �c;0 ¼ 0:0027, is the mean speed of a corner flow
having a contact angle of a = 0, and the function K(a)
is defined by Eq. (A2). Eq. (A6) agrees with numerical cal-
culations within a relative error of 2% with the parameters
m, b, and k set to 1.88, 150, and 0.87. The linear
term involving b and k is included to improve the fit with-
out affecting the asymptotes of U �1 ¼ U �c;0 and U �2 ¼
1=½7ðK� 2Þ2	 that apply in the limits of small (a! 0,
(K � 2)! 0) and large (a! p/2, K!1) contact angle.

To obtain a comprehensive expression describing the
mean speed for all contact angles and aspect ratios the
asymptotes in Eq. (A5) are chosen as

U �1 ¼
1

12
and U �2 ¼

1

akþ 3k3

� �n

þ ðU �cÞ
n

� �1=n

ðA7Þ

where k = W/hc and hc is the fluid depth at the channel cen-
ter. The left asymptote U �1 ¼ 1=12 applies in the limit where
the fluid depth greatly exceeds the width (k! 0); here, the
fluid friction is equivalent to that between infinite parallel
plates. The right asymptote U �2 approaches one of two
alternative limits as the liquid depth becomes very shallow
at the center (k!1). The corner flow solution is recov-
ered for any finite U �c ; otherwise the mean speed decreases
as 1/3k2 as appropriate for a contact angle of 90�. When
Eqs. (A7) are substituted into Eq. (A5) with the parameters
taken as m = 1.31, n = 0.82, and a = 2.6, the mean speed is
approximated within a maximum relative error of 10% for
contact angles in the range 0� 6 a 6 60�.
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